
Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 1 6/29/16 

 
What:  • A broad handbook chapter on microprocessors in electronic instruments 
Goal:  • To provide the most needed information for the average reader  

• How the instrument is built and works 
• Sense of where things are heading with embedded computers in instruments 
• Implications for instrument usefulness given the microprocessor design 

Reader:  • Beginning user 
• Student 
• Experienced practitioner 
• Instrument evaluator/selector  
• Not targeted at an instrument designer. 

 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 2 6/29/16 

 
 
Chapter 10: Embedded Computers in Electronic Instruments ......................................................................... 3 

10.1 Introduction .......................................................................................................................................... 3 
10.2 Embedded Computers .......................................................................................................................... 3 

10.2.1 Embedded Computer Model ......................................................................................................... 4 
10.2.2 Embedded Computer Uses ............................................................................................................ 4 
10.2.3 Benefits of embedded computers in instruments .......................................................................... 6 

10.3 Embedded Computer System Hardware .............................................................................................. 7 
10.3.1 Microprocessors as the heart of the Embedded Computer ........................................................... 7 
10.3.2 How Microprocessors Work ......................................................................................................... 7 
10.3.3 Program and Data Store ................................................................................................................ 7 
10.3.4 Machine instructions ..................................................................................................................... 8 
10.3.5 Integer and floating point instructions .......................................................................................... 9 
10.3.6 Internal registers ............................................................................................................................ 9 
10.3.7 Interrupts ....................................................................................................................................... 9 
10.3.7 Cache ........................................................................................................................................... 10 
10.3.8 RISC versus CISC ....................................................................................................................... 10 

10.4 Elements of an embedded computer .................................................................................................. 10 
10.4.1 Support circuitry ......................................................................................................................... 10 
10.4.2 Memory ....................................................................................................................................... 10 
10.4.3 Non-volatile memory .................................................................................................................. 11 
10.4.4 Peripheral components ................................................................................................................ 11 
10.4.5 Timers ......................................................................................................................................... 12 
10.4.6 Instrument hardware ................................................................................................................... 12 

10.5 Physical form of the embedded computer .......................................................................................... 12 
10.6 Architecture of the embedded computer instrument .......................................................................... 13 
10.7 Embedded Computer System Software ............................................................................................. 16 

10.7.1 How Embedded Computers are programmed ............................................................................. 16 
10.7.2 Assembly Language Development ............................................................................................. 16 
10.7.3 High-Level Language Development ........................................................................................... 18 
10.7.4 High-level language compilers ................................................................................................... 19 
10.7.5 Operating systems software ........................................................................................................ 20 
10.7.6 Real Time .................................................................................................................................... 22 

10.8 User Interfaces ................................................................................................................................... 22 
10.9 External Interfaces ............................................................................................................................. 23 

10.9.1 Hardware interface characteristics .............................................................................................. 24 
10.9.2 Hardware interface standards ...................................................................................................... 25 
10.9.3 Software protocol standards ........................................................................................................ 26 

10.10 Numerical issues .............................................................................................................................. 27 
10.10.1 Integers ...................................................................................................................................... 27 
10.10.2 Floating Point Numbers ............................................................................................................ 28 
10.10.3 Scaling and fixed point representations .................................................................................... 29 
10.10.4 Big-endian and Little-endian .................................................................................................... 30 

10.11 Instrumentation Calibration and Correction Using Embedded Computers ..................................... 31 
10.11.1 Calibration ................................................................................................................................. 31 
10.11.2 Linear Calibration ..................................................................................................................... 32 
10.11.3 Correction .................................................................................................................................. 32 

10.12 Using instruments that contain embedded computers ...................................................................... 32 
10.12.1 Instrument customization .......................................................................................................... 33 
10.12.2 User access to an embedded computer ..................................................................................... 34 
10.12.3 Environmental considerations ................................................................................................... 35 
10.12.4 Instrument Longevity ................................................................................................................ 36 

 
 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 3 6/29/16 

Chapter 10: Embedded Computers in Electronic Instruments 
 
 

10.1 Introduction 
 
All but the simplest electronic instruments have some form of embedded computer system.  Given this, it is 
important in a handbook on electronic instruments to provide some foundation on embedded computers.  
The goals of this chapter1 are to describe: 
 
• What embedded computers are. 
• How embedded computers work. 
• What embedded computers are used for in instruments. 
 
The embedded computer is exactly what the name implies – it is a computer put into (i.e. embedded) in a 
device.  The goal of the device is not to be a general-purpose computer, but to provide some other function.  
In the focus of this chapter and book, the devices we are talking about are instruments.  
 
Embedded computers are almost always built from microprocessors or microcontrollers.   Microprocessors 
are the physical hardware integrated circuit (IC) that is the central processing unit (CPU) of the computer. 
In the beginning, microprocessors were miniature, simplified versions of larger computer systems.  Since 
they were smaller versions of their larger relatives, they were dubbed microprocessors.  Microcontrollers 
are a single IC with the CPU and the additional circuitry and memory to make an entire embedded 
computer.  
 
In the context of this chapter, embedded computer refers to the full, embedded computer system used 
within an instrument.  Microprocessor and microcontroller refer to the IC hardware (i.e. the chip).   
 
 

10.2 Embedded Computers 
 
Originally, there were no embedded computers in electronic instruments.  The instruments consisted of the 
raw analog and (eventually) digital electronics.  As computers and digital electronics advanced, instruments 
began to add limited connections to external computers.  This dramatically extended what a user could do 
with the instrument (involving calculation, automation, ease of use and integration into systems of 
instruments).  With the advent of microprocessors, there was a transition to some computing along with the 
raw measurement inside the instrument – embedded computing.  
 
There is a shift to more and more computing embedded in the instrument because of reductions of 
computing cost and size, increasing computing power and increasing number of uses for computing in the 
instrument domain.  Systems that were previously a computer or PC and an instrument are now just an 
instrument.  (In fact, what used to take five bays of six foot high equipment racks including a minicomputer 
is now in a 8”x18”x20” instrument.)  So, more and more computing is moving into the instrument. 
 
This transition is happening due to the demand for functionality, performance, and flexibility in instruments 
and also due the low cost of microprocessors.  In fact, the cost of microprocessors is sufficiently low and 
their value is sufficiently high that most instruments have more than one embedded computer.  There is 

                                                             
1 This chapter includes material developed from Joe Mueller’s chapter “Microprocessors in Electronic 
Instruments” from the second edition of this handbook. 
 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 4 6/29/16 

also a certain amount of the inverse happening - instrumentation going into personal computers in the form 
of plug-in boards.  In many of these plug-in boards, there are still embedded computers. 
 

10.2.1 Embedded Computer Model 
 
The instrument and its embedded computer normally interact with four areas of the world: the 
measurement, the user, peripherals and external computers.  The instrument needs to take in measurement 
input and/or send out source output.  A source is defined as an instrument that generates or synthesizes 
signal output.  An analyzer is defined as an instrument that analyzes or measures input signals.  These 
signals can consist of analog and/or digital signals. (Note that throughout this chapter measurement means 
both input analysis and output synthesis/generation of signals.)  The front end of the instrument is the 
portion of the instrument that conditions, shapes or modifies the signal to make it suitable for acquisition by 
the analog to digital converter.  The instrument normally interacts with the user of the measurement.  The 
instrument also generally interacts with an external computer, which is connected for control or data 
connectivity purposes.  Finally, in some cases, the instrument is connected to local peripherals, primarily 
for printing and storage.  The following figure (Figure 10.1) shows a generalized block diagram the 
embedded computers and these aspects. 
 
 

 
 

Figure 10.1: Embedded Computer Generalized Block Diagram  
 

10.2.2 Embedded Computer Uses 
 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 5 6/29/16 

The embedded computer, as seen from the previous discussion, has taken a central role in the operation and 
function of an instrument.  Embedded computers have a wide range of specific uses (related to the 
measurement, user, external computer and local peripheral aspects) within the instrument: 
 
• External computer interfaces 
• User interfaces 
• User configuration and customization 
• User-defined automation 
• Measurement or source calculation 
• Measurement or source control 
• Measurement or source calibration and self tests 
• Measurement or source error and failure notification 
• Local peripheral control 
• Coordination of the various tasks 
 
The following table (Table 10.1) describes these uses. 
 

Table 10.1: Uses of embedded computers 
 

Use Description 
• External computer 

interfaces 
The embedded computer is typically involved in the control and transfer 
of data through external interfaces.  This allows for the connection of the 
instrument to external PCs, networks and peripherals. Examples, which 
are described later in this chapter, include IEEE 488 (also known as GPIB 
or HP-IB), RS-232 (serial), Centronics (parallel), Universal Serial Bus 
(USB), IEEE 1394 (FireWire), et cetera.   

• User interfaces The embedded computer is also typically involved in the display to and 
input from the user.  Examples include keyboards, switches, rotary pulse 
generators (RPGs - i.e. knobs), Light Emitting Diodes (LEDs – single or 
alpha-numeric displays), Liquid Crystal Displays (LCDs), CRTs, touch 
screens, … 

• User configuration and 
customization 

Many instruments often have a large amount of configuration information 
due to their advanced capabilities.  The embedded computer enables 
saving and recalling of the instrument state.  Also, the embedded computer 
sometimes is used for user customization of the instrument.  This can 
range from simple configuration modifications through complete 
instrument programmability. 

• User-defined automation With very powerful embedded computers available in instruments, it is 
often unnecessary to connect the instrument to an external computer for 
more advanced tasks.  Examples include go/no-go (also known as 
pass/fail) testing and data logging. 

• Measurement or source 
calculation 

The embedded computer almost always does calculations, ranging from 
very simple to very complex, that convert the raw measurement data to the 
target instrument information for measurement or vice versa for source 
instruments.  For example, electrical transducers like thermocouples don't 
produce results that are in the terms that the users want.  Embedded 
computers do the calculations to convert the measured voltage to the 
desired temperature reading. 

• Measurement or source 
control 

The embedded computer generally controls the actual measurement 
process.  This can include control of a range of functions like Analog to 
Digital conversion, switching, filtering, detection, shaping and so on.  
Note that this is not the analog or digital electronics, but the control of 
these components that do the measuring or synthesizing. 

• Measurement or source 
calibration and self tests 

Many instruments are very complex.  The embedded computer is almost 
always used to do at least a small amount of self-test.  Most instruments 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 6 6/29/16 

use embedded computers for more extensive calibration tests.   
• Measurement or source 

error and failure 
notification 

As with calibration, many instruments are very complex – not only in the 
basic hardware and system but also in the type of measurements.  
Instruments often do sampling and statistical analysis.  Acceptable 
measurement data can be refined and verified with a microprocessor in the 
system.  Notification of marginal, out of bounds or failure conditions can 
be given. 

• Local peripheral control Many instruments have built in storage devices.  These are often floppy 
disk drives.  There are sometimes built-in printers, but more often there is 
a connection to an external, but local, printer.  Less common are local 
measurement-related peripherals like switches or attenuators that are 
controlled by the embedded computer. 

• Coordination of the 
various tasks 

The previous uses interact in various ways.  A key use of embedded 
computers is to organize, synchronize and control the various aspects of 
the instrument.   

 
 

10.2.3 Benefits of embedded computers in instruments 
 
In addition to the direct uses of embedded computers, it is instructive to think about the value of an 
embedded computer inside an instrument.  The benefits occur throughout the full lifecycle of an instrument 
from development through maintenance.  These benefits are described in the following table (Table 10.2). 
 

Table 10.2: Benefits of embedded computers through its lifecycle 
 

Lifecycle phase Benefit of embedded computers 
• Development One of the biggest advantages of embedding computers inside an 

instrument is that they allow several aspects of the hardware design to be 
simplified.  In many instruments, the embedded computer participates in 
acquisition of the measurement data by servicing the measurement 
hardware.  Embedded computers also simplify the digital design by 
providing mathematical and logical manipulations, which would otherwise 
be done in hardware.  They also provide calibration both through 
numerical manipulation of data and by controlling calibration hardware.  
This is the classic transition of function from hardware to software.   

• Manufacturing The embedded computer allows for lower manufacturing costs through 
effective automated testing of the instrument.  Embedded computers also 
are a benefit since they allow for easier and lower cost defect fixes and 
upgrades (with a ROM or program change). 

• Installation When used as a stand-alone instrument, embedded computers can make 
the set-up much easier by providing on-line help or set-up menus.  This 
also includes automatic or user-assisted calibration.  Although many are 
stand-alone instruments, a large number are part of a larger system.  The 
embedded computers often make it easier to connect an instrument to a 
computer system by providing multiple interfaces and simplified or 
automatic set up of interface characteristics. 

• Use Given the complexity of many instruments, it becomes more difficult to 
coherently present functionality to the user.  The embedded computers 
allow for user interfaces that are easier to learn and use.  This also applies 
to local language, data, and numerical format customization of the 
instrument. 

• Maintenance Given the complexity of function, it is often difficult to tell if the 
instrument is operating properly.  The embedded computer allows for a 
system that will check itself and its measurement hardware at various 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 7 6/29/16 

times (at power-on, periodically, before each measurement) and describe 
not only the presence of a failure, but also repair suggestions. 

 
 

10.3 Embedded Computer System Hardware 
 

10.3.1 Microprocessors as the heart of the Embedded Computer  
 
The embedded computer in an instrument requires both hardware and software.  The microprocessor is just 
one of the hardware components.  A full embedded computer also requires support circuitry, memory and 
peripherals (including the instrument hardware).  The microprocessor provides the Central Processing Unit 
(CPU) of the embedded computer.  Some microprocessors are very complex while others are fairly 
rudimentary.  There is variation in the amount of integration of functionality onto microprocessors – this 
can include memory, I/O and support circuitry. 
 

10.3.2 How Microprocessors Work 
 
A microprocessor is basically a state machine that goes through various state changes determined by its 
program and its external inputs.  This program is a list of machine language instructions that are stored in 
memory.  The microprocessor accesses the program by generating a memory storage location or address on 
the address bus.  The memory then returns the appropriate instruction (or data) from that location over the 
data bus.  The machine-language instructions are numbers that are returned to the microprocessor.   
 

10.3.3 Program and Data Store 
 
The address bus and the data bus are physical connections between the microprocessor and memory.  The 
number of connections on each bus varies and has grown over time.  In a high-level architectural sense, 
there are two general classes of memory - program store and the data store.  The program store is, as the 
name implies, the memory where the program is stored.  Similarly, the data store is where data values used 
by the program are stored and read.  The general structure of the microprocessor connected to program and 
data store can be seen in the following figure (Figure 10.2).  In most cases, the input/output (I/O) devices 
are connected via this same address and data bus mechanism. 
 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 8 6/29/16 

 
Figure 10.2: Microprocessor Basic Block Diagram 

 
 
The data store is very similar to the program store.  It has two primary functions:  (1) It is used to store 
values that are used in calculations.  (2) It also provides the microprocessor with a subroutine stack.  The 
read/write line shown in Figure 10.2 is the signal used by the data store memory to indicate a memory read 
or a memory write operation.  Depending on the microprocessor system, there are other control lines 
beyond the scope of this chapter used to control the memory devices and address and data bus.  The 
subroutine stack is an integral part of the computer that provides for subroutine call and return capability.  
The return address (the next address for the instruction pointer after the call instruction) is pushed onto the 
stack as the call instruction is executed so that when the return instruction is executed it gets the appropriate 
next instruction address.  Calls generally push the instruction pointer onto the stack and it is the job of the 
developer or the high-level language compiler to deal with saving registers.  Pushing information onto the 
stack is one of the common ways to pass parameters to the subroutine.  For interrupts, the information 
pushed on the stack often includes not only the return address information, but also various microprocessor 
registers.   
 
Although the data store needs to be writable, there does not need to be a physical difference between 
program store and data store memory.  Therefore, most microprocessors do not differentiate between 
program and data.  Microprocessors like this are referred to as Von Neumann machines and have program 
and data in the same memory space.  There are also quite a few microprocessors that do have separate 
program and data space (inside or outside of the microprocessor) called Harvard machines.  This 
differentiated memory is useful because it allows for simpler and/or faster CPU design. 
 

10.3.4 Machine instructions 
 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 9 6/29/16 

The machine language instructions indicate to the microprocessor what sort of actions it should take.  The 
following table (Table 10.3) shows examples of the types of operations that a microprocessor may support. 
 

Table 10.3: Types of microprocessor operations 
 

Type of operation Examples 
• Data load, store, clear 
• Stack push, pop 
• Integer math add, subtract, multiply, divide 
• Boolean logic and, or, not, nor, xor, shift, rotate 
• Branching comparisons, conditional branch, unconditional branch 
• Subroutine call, return 
• Floating point math add, subtract, multiply, divide  
• Interrupts enable, disable, generate interrupt 
 
Microprocessors compete on the richness of their instruction set, data width, address space and their speed.  
Therefore, there is tremendous variety in the instructions and how they operate.   
 

10.3.5 Integer and floating point instructions 
 
All microprocessors have integer mathematical operations, but many do not have floating point operations 
built in.  For microprocessors with no floating point facilities, the developer is required to use software 
routines, which are very costly in time, to handle floating point operations.  Some microprocessors have 
pre-defined floating point operations, but without built-in floating point hardware.  In these cases, when the 
floating point instructions are encountered, the microprocessor will generate internal signals that cause an 
optional floating point coprocessor to perform the operation.  If there is no coprocessor present, a CPU 
exception or trap is generated that causes a software emulation of the floating point operation to occur.  The 
software emulation is slower than hardware floating point but it provides the advantage that the software 
can be identical across a range of microprocessor hardware. 
 

10.3.6 Internal registers 
 
Microprocessors also have various internal registers.  Common registers store the instruction address (also 
called the instruction pointer or program counter register), data addresses and data.  There is a wide variety 
in the number of general address and data registers.  For more advanced microprocessors, there are both 
integer and floating point registers.  Microprocessors also have a variety of status registers available to the 
programmer. 
 

10.3.7 Interrupts 
 
Another critical part of microprocessor architecture is the interrupt.  The concept is that a microprocessor is 
executing a program and it needs to respond to an important event.  An interrupt is a hardware signal sent 
to the microprocessor that an important has occurred.  The interrupt forces the microprocessor at the end of 
the current instruction to do a subroutine call to an interrupt service routine.  The microprocessor performs 
the instructions to handle the event and then returns to the previous program.  Although this is a critical part 
of computers used in general applications, it is especially important in instrument applications.  Interrupts 
can be the trigger of a measurement, data transfer completion, error conditions, user input, and so on.  Just 
as instruction sets vary, the interrupt system design of a microprocessor can very greatly from a single 
interrupt approach to multiple interrupts with various priorities or levels.   
 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 10 6/29/16 

10.3.7 Cache 
 
In many current and high-performance microprocessors, there is a feature called cache.  This is a portion of 
high speed memory that the microprocessor uses to store copies of frequently used memory locations.  This 
is helpful because the main semiconductor memory of computer systems is often slower (often around 100 
nanoseconds access time) than the microprocessor can access and use memory.  To help with this 
imbalance, cache memory stores or pre-stores memory locations for these frequently used areas, which 
could be either instructions (in instruction cache) or data (in data cache).  Cache tends to be in the 10 
nanosecond access time range.  The cache memory can be located on the microprocessor and is called 
primary cache memory (usually less than 64 Kbytes of memory).  The cache memory can also be located 
outside of the microprocessor.  This external cache is called secondary cache memory (usually in the 256 
Kbytes to 512 Kbytes range).  Cache has a huge performance benefit – especially in loops and common 
routines that fit in cache.  It also can represent a challenge for the instrument designer because cache causes 
the microprocessor to operate non-deterministically with respect to performance – it can run faster or 
slower depending on the data stream and inputs to the computer system. 
 
Some microprocessors have internal bus widths that are different than what is brought out to the external 
pins.  This is done to allow for a faster processor at a lower cost.  In these cases, the external (to the 
microprocessor) data paths will be narrower (e.g. 16 data bits wide) while the internal microprocessor data 
paths will be full width (e.g. 32 data bits wide).  When the microprocessor gets data into or out of a full 
width register it would perform two sequential read or write operations to get the full information.  This is 
especially effective when coupled with caching.  This allows for segments of code or loop structures to 
operate very efficiently (on the full width data) even though the external implementation is less expensive 
partial width hardware. 
 

10.3.8 RISC versus CISC 
 
Another innovation in computing that has been making its way into instruments is microprocessors based 
on Reduced Instruction Set Computers (RISC).  This is based on research that shows that a computer 
system can be designed to operate more efficiently if all of its instructions are very simple and they execute 
in a single clock cycle.  This is different from the classical Complex Instruction Set Computer (CISC) 
model.  Chips like the Intel x86 and Pentium families and the Motorola 68000 family are CISC 
microprocessors.  Chips like the Motorola PowerPC and joint HP and Intel IA-64 microprocessors are 
RISC systems.  One of the challenges for instrument designers is that RISC systems usually have a very 
convoluted instruction set.  Most development for RISC systems require advanced compiler technologies to 
achieve high performance and allow developers to easily use them.  Another characteristic of RISC systems 
is that their application code tends to be larger than CISC systems because the instruction set is simpler. 
 
 

10.4 Elements of an embedded computer 

10.4.1 Support circuitry 
 
Although requirements vary, most microprocessors require a certain amount of support circuitry.  This 
includes the generation of a system clock, initialization hardware, and bus management.  In a conventional 
design, this often takes 2 or 3 external integrated circuits (ICs) and 5 to 10 discrete components.  The detail 
of the design at this level depends heavily on the microprocessor used.  In complex or high volume designs, 
an Application-Specific Integrated Circuit (ASIC) may be used to provide much of this circuitry. 
 

10.4.2 Memory 
 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 11 6/29/16 

The microprocessor requires memory both for program and data store.  Embedded computer systems 
usually have both ROM and RAM.  Read Only Memory (ROM) is memory whose contents do not change 
even if power is no longer applied to the memory.  Random Access Memory (RAM) is a historical, but 
inadequate term, that really refers to read/write memory - memory whose contents can be changed.   
 
RAM memory is volatile – it will loose its contents when power is no longer applied.  RAM is normally 
implemented as either static or dynamic devices.  Static memory is a type of electrical circuit2 that will 
retain its data with or without access as long as power is supplied.  Dynamic memory is built out of a 
special type circuit3 that requires periodic memory access (every few milliseconds) to refresh and maintain 
the memory state.  This is handled by memory controllers and requires no special attention by the 
developer.  The advantage of the dynamic memory RAM is that it consumes much less power and space. 
 
ROM is used for program storage because the program does not usually change after power is supplied to 
the instrument.  There are a variety of technologies used for ROM in embedded applications:   
• Mask ROM – custom programmed at the time of manufacture, unchangeable  
• Fusible link Programmable ROM (PROM) – custom programmed before use, unchangeable after 

programming 
• Erasable PROM (EPROM)  - custom programmed before use, can be reprogrammed after erasing with 

ultraviolet light 
• Electronically Erasable PROM (EEPROM) – custom programmed before use, can be reprogrammed 

after erasing - like an EPROM but the erasing is done electrically. 
 
 

10.4.3 Non-volatile memory 
 
Some instruments are designed with special nonvolatile RAM; i.e. memory that maintains its contents after 
power has been removed.  This is necessary for storing information like calibration and configuration data.  
This can be implemented with regular RAM memory that has a battery backup.  It can also be provided by 
special nonvolatile memory components – most commonly flash memory devices.  Flash memory is a 
special type of EEPROM that uses block transfers (instead of individual bytes) and has a fairly slow (in 
computer terms) write time.  So, it is not useful as a general read/write memory device, but is perfect for 
non-volatile memory purposes.  There are also a limited number of writes allowed (on the order of 10,000).   
 
All embedded systems will have either a ROM/RAM or a flash/RAM memory set so that the system will be 
able to operate the next time the power is turned on. 
 

10.4.4 Peripheral components 
 
Microprocessors normally have several peripheral components.  These are usually Very Large Scale 
Integration (VLSI) components that provide some major functionality.  These peripheral components tend 
to have a small block of registers or memory that control their hardware functions.   
 
For example, a very common peripheral component is a Universal Asynchronous Receiver/Transmitter 
(UART).  It provides a serial interface between the instrument and an external device or computer.  UARTs 
have registers for configuration information (like data rate, number of data bits, parity) and for actual data 
transfers.  When the microprocessor writes a character to the data out register, the UART transmits the 
character, serially.  Similarly, when the microprocessor reads the data in register, the UART transfers the 
current character that has been received.  (This does require that the microprocessor checks or knows 
through interrupts or status registers that there is valid data in the UART.)  
                                                             
2 Static memory is normally built out of latches or flip-flops. 
3 Dynamic memory is normally built out of a stored-charge circuit that uses a switched capacitor for the 
storage element. 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 12 6/29/16 

 

10.4.5 Timers 
 
Another very common hardware feature is the timer.   These are used to generate periodic interrupts to the 
microprocessor.  These can be used for triggering periodic operations.  They are also used as watchdog 
timers.  A watchdog timer helps the embedded computer recover after a non-fatal software failure.  These 
can happen because of static electricity, radiation, random hardware faults or programming faults.  The 
watchdog timer is set up to interrupt and reset the microprocessor after some moderately long period of 
time (say one second).  As long as everything is working properly, the microprocessor will reset the 
watchdog timer – before it generates an interrupt.  If, however, the microprocessor hangs up or freezes, the 
watchdog timer will generate a reset that returns the system to normal operation. 
 

10.4.6 Instrument hardware 
 
Given that the point of these microprocessors is instrumentation (measurement, analysis, synthesis, 
switches, et cetera), the microprocessor needs to have access to the actual hardware of the instrument.  This 
instrument hardware is normally accessed by the microprocessor like other peripheral components - i.e. as 
registers or memory locations.   
 
Microprocessors frequently interface with the instruments' analog circuits using Analog-to-Digital 
Converters (ADCs) and Digital-to-Analog Converters (DACs).  In an analog instrument, the ADC bridges 
the gap between the analog domain and the digital domain.  In many cases, substantial processing is done 
after the input has been digitized.  Increases in the capabilities of ADCs allow the analog input to be 
digitized closer to the front end of the instrument, allowing a greater portion of the measurement functions 
to take place in the embedded computer system.  This has the advantages of providing greater flexibility 
and eliminating errors introduced by analog components.  Just as ADCs are critical to analog measuring 
instruments, DACs play an important role in the design of source instruments (like signal generators).  
They are also very powerful when used together.  For example, instruments can have automatic calibration 
procedures where the embedded computer adjusts an analog circuit with a DAC and measures the analog 
response with an ADC. 
 
 

10.5 Physical form of the embedded computer  
 
Embedded computers in instruments take one of three different forms: a separate circuit board, a portion of 
a circuit board, or a single chip.  In the case of a separate circuit board the embedded computer is a board-
level computer that is a circuit board separate from the rest of the measurement function.  For an 
embedded computer that is a portion of a circuit board there is a microprocessor and its associated support 
circuitry that comprise the embedded computer with at least some portion of the measurement functions on 
the same circuit board.  A single chip embedded computer can be a microcontroller, Digital Signal 
Processor or microprocessor core with almost all of the support circuitry built into the chip.  The 
following table (Table 10.4) describes these physical form choices in some additional detail: 
 

Table 10.4: Classes of embedded computers 
 

Embedded 
computer class 

Description Advantages and Disadvantages 

Board-level 
computer 

A board-level computer is an 
embedded computer that is built 
on a circuit board (or sometimes 
multiple boards) that is separate 

• Advantages:  The computer is all there.  The 
system is standard (either PC or workstation) 
and already designed.  The system, because it is 
based on existing computers, has development 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 13 6/29/16 

from the rest of the measurement 
function.  These usually include 
CPU, memory and user I/O.  The 
designer needs to add disk, 
display, power and the 
measurement hardware. These 
can be a specially designed 
board, an integrated PC 
motherboard or even a RISC 
workstation motherboard. 

tools, which aid software development. 
 
• Disadvantages: Because it is based on a more 

general-purpose computer board, it usually is 
larger in size and power.  These boards often 
require a hard disk drive.  There is also the 
potential for Radio Frequency Interference 
(RFI). 

 

Standard 
microprocessor 

This is a normal, off the shelf, 
microprocessor (like a Motorola 
PowerPC or an Intel Pentium). 
The computer system around the 
microprocessor must be 
designed and integrated with the 
instrument functions. 

• Advantages: Because it is being designed 
specifically for the instrument, it can be tightly 
integrated into the instrument application.  This 
can allow for less space, cost and power.   
 

• Disadvantages: The embedded computer must 
be both designed and manufactured.   

Single chip 
microcontroller 

A microcontroller is a single IC 
containing almost the entire 
embedded computer.  It typically 
includes enough ROM and RAM 
for the application along with 
several other peripherals and I/O 
lines that can be used for digital 
input or output.  
Microcontrollers frequently 
include ADC's (analog to digital 
converters), DAC's (digital to 
analog converters), and interface 
support - such as serial ports.  
 

• Advantages: Because it is all there, there is 
minimal space, cost and power.  Almost all of 
the pins can be used to interface to the 
instrument system since no pins are necessary 
for an address bus.  Sometimes these lines may 
be included, but are often shared with other I/O 
uses. 
 

• Disadvantages: By their nature, they tend to be 
very limited in what applications they can be 
used in (primarily by the limited ROM and 
RAM).  They are more difficult to develop 
applications for since they don't bring out 
address and data bus information which 
facilitate development tools.  This means that 
they don't have the support that makes it easy 
to develop firmware with the development 
systems. 

 
A Digital Signal Processor (DSP) is a special type of microcontroller that includes special instructions for 
digital signal processing allowing it to perform certain types of mathematical operations very efficiently.   
These math operations are primarily multiply and accumulate (MAC) functions, which are used in filter 
algorithms. Like the microcontroller, there is reduced space, cost and power. Almost all of the pins can be 
used to interface to the instrument system.  
 
Microprocessor cores are custom microprocessor IC segments or elements that are used inside custom 
designed ICs.  In this case, the instrument designer has a portion of an ASIC that is the CPU core.  The 
designer can put much of the rest of the system including some analog electronics on the ASIC creating a 
custom microcontroller. This approach allows for minimum size and power.  In very high volumes, the cost 
can be very low.  However, these chips are very tuned to specific applications.  They are also generally 
difficult to develop.  
 

10.6 Architecture of the embedded computer instrument 
 
Just as there a variety of physical forms that an embedded computer can take, there are also several ways to 
architect an embedded computer instrument.  The architecture of the embedded computer can impact the 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 14 6/29/16 

instrument's cost, performance, functionality, ease of development, style of use and expandability.  The 
range of choices include: 
 
• Peripheral-style instruments (externally attached to a PC) 
• PC plug-in instruments (circuit boards inside a PC) 
• Single processor instruments 
• Multiple processors instruments 
• Embedded PC-based instruments (where the embedded computer is a PC) 
• Embedded workstation-based instruments 
 
The following table (Table 10.5) describes these architectural choices in some additional detail: 
 

Table 10.5: Architecture choices for embedded computers 
 

Architecture Description Advantages and Disadvantages 
Peripheral-style 
instruments 

This is a very simple instrument 
that is designed to always be 
used with a PC.  They usually 
have a low-end microcontroller 
and little or no human interface 
since they are designed to 
connect to a PC.  They generally 
have very simple system 
software. 
 

• Advantages: Because they are ‘faceless’ they 
have much lower cost, power and size.  There 
is much simpler design because of the 
simplicity of HW (mostly the measurement 
part) and simplicity of the embedded SW 
(because there is very little).  There is also a 
benefit because the software is up to date 
because the computer is external.  The data is 
already in the PC so exporting it to application 
programs is easier. 
 

• Disadvantages:  They require a PC (or laptop).  
They may not be as portable as a stand-alone 
instrument. External system and application 
changes and versions require ongoing updates.  
The interface to the PC needs to be chosen 
carefully to prevent obsolescence.   

PC plug-in 
instruments 

These are plug in measurement 
boards that go into a PC.  They 
are similar in many respects and 
are a variant of peripheral style 
instruments.  The difference is 
that the interface is the internal 
PC bus as opposed to an external 
I/O interface.  Plug-in board 
instruments still have a 
microprocessor and simple 
system software. 
 

• Advantages:  Similar to the peripheral style 
instrument, because they are ‘faceless’, they 
have much lower cost, power and size.  There 
is much simpler design because of the 
simplicity of HW (mostly the measurement 
part) and simplicity of the embedded SW 
(because there is very little).   
 

• Disadvantages: They have to be in a PC.  This 
also presents some challenges from a support 
point of view – with respect to different PC 
configurations and reliability.  There are 
ongoing challenges because of changes in PC 
buses.  There are also changes in PC form 
factors. There have to be ongoing updates to 
deal with external system and application 
changes and versions.  Another issue is in 
dealing with radio frequency interference from 
the PC.   

Single processor 
instruments 

The normal microprocessor-
based instrument.  They have a 
local human interface and most 
have some form of remote 

• Advantages:  They can operate stand-alone and 
don’t require a PC.  This helps with portability 
and with some of the challenges of PC 
connectivity, operating systems, and 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 15 6/29/16 

computer interface.   
 

applications.   
 

• Disadvantages:  They are costlier because of 
the user interface, extra power, size, et cetera.  
There has to be some instrument connectivity 
mechanism (i.e. software and drivers) to import 
instrument data into to the PC. 

Multiple 
processors 
instruments 

High-end instruments often 
include multiple processors for 
parallel measurement streams or 
tasks (like measurement, 
communication, front panel, and 
computation).  There is usually 
more than one type of operating 
system in multiple processor 
instruments – typically with at 
least one real time operating 
system (which is described later 
in this chapter).  
 

• Advantages:  The key advantage is 
performance – there is more processor power 
dedicated to tasks.  The system can be 
optimized across tasks – for example using 
simple microcontrollers for I/O intensive 
operations, normal processor for RAM/ROM 
intensive operations.  There are also some 
electrical advantages because the processors 
can be located closer to measurement 
hardware.  
 

• Disadvantages:  Multiple processor instruments 
are more expensive and larger. There has to be 
some instrument connectivity mechanism (i.e. 
software and drivers) to import instrument data 
into to the PC. 

Embedded PC-
based 
instruments 

A full PC is inside the 
instrument as the embedded 
computer.  This can be a normal 
PC motherboard.  The embedded 
PC operating system is usually 
Windows 95 or NT.  Sometimes 
DOS is used and Windows CE is 
an emerging technology. 
 

• Advantages:  There are standard high level 
components that can be used for the embedded 
computer hardware and software.  There is no 
hardware computer development.  The 
hardware tends to be lower cost.  There is more 
computing power because of ongoing 
improvements in PC performance.  There are 
established and highly productive software 
development tools.   
 

• Disadvantages: A key challenge is dealing with 
larger and constrained physical form factor.  
The designer also has to deal with software 
form factor (software footprint) because a full 
OS tends to have many things that are not 
needed in the instrument.  The designer has to 
deal with obsolescence of the motherboard.  
The designer also has to deal with operating 
system changes and/or obsolescence.  Some 
instruments use special form-factor variants of 
PCs, but even though this helps with the form-
factor, it has the disadvantage of no longer 
being a standard motherboard. 

 
There are some instruments that are based on embedded workstations.  This is very much like using an 
embedded PC, but this type of instrument is based on a high-performance workstation.  Normally, these are 
built around a RISC processor and UNIX. The key advantage is very high performance for computationally 
intensive applications (usually floating point mathematical operations).  Like the embedded PC, there are 
standard high level components that can be used for the hardware and software.  There are also established 
and highly productive software development tools. Like the embedded PC, the key challenge is dealing 
with larger and constrained physical form factor.  Embedded workstations also tend to be more expensive. 
 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 16 6/29/16 

10.7 Embedded Computer System Software 
 
As stated earlier, the embedded computer in an instrument requires both hardware and software 
components.  Embedded computer system software includes: 
• Operating system - the software environment that the (instrument) applications run within.   
• Instrument application - the software program that performs the instrument functions on the 

hardware.   
• Support and utility software - additional software the user of the instrument requires to configure, 

operate, or maintain the instrument (like reloading or updating system software, saving and restoring 
configurations, et cetera).  

 

10.7.1 How Embedded Computers are programmed 
 
As mentioned previously, the instructions for the computer are located in program store memory.  Program 
development is fundamentally the process that the software developers use to generate the machine 
language instructions that perform the intended instrument functions.   
 
Some development for embedded computers for instruments has been done in assembly language.  This is a 
convenient representation of the machine language of the embedded computer.  It still is at the level of the 
microprocessor, but it is symbolic rather than ones and zeros.  The following table (Table 10.6) shows a 
simple program fragment in assembly language and the resulting machine code (on the right).  This 
program fragment is intended to show reading some character data and processing the character data when 
a space is encountered. 
 

Table 10.6: Assembly language program example 
 

Assembly language  
 

Machine 
code 

MOVE  (3F),A  ; read from port at address 3F 54 3F 
AND  #7F,A  ; mask off the upper bit 21 7F 
COMP  #20,A  ; if the input is equal to 20H (a space) 56 20 
BEQ  ParseIt  ; then go to the parse routine 85 24 35 
 
The resulting machine code for embedded computers is often put into ROM.  Because this programming is 
viewed as less changeable than general software application development it is referred to as firmware 
(firmware being less volatile than software).     
 

10.7.2 Assembly Language Development  
 
The assembly language source code is run through an assembler.  The assembler is a program that 
translates the assembly language input into the machine language.  The assembler is normally run on a 
development computer, normally a PC that is used to create the software for the embedded computer.  Note 
that the development computer is not usually the target computer - the embedded computer in the 
instrument application.  The machine code produced by the development computer is for the target 
computer microprocessor (the processors of the development and target computers are usually different).  
This machine code is then transferred to the board containing the microprocessor.  For smaller, simpler, 
systems this is often done by transferring a memory image to a PROM programmer – a device that writes 
the image into a PROM.  This PROM is then physically inserted onto the board.   This process is shown in 
the following figure (Figure 10.3). 
 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 17 6/29/16 

 
 

Figure 10.3: Process of assembly language to machine code 
 
  
This approach of developing code on a development system and placing it into the embedded computer is 
called cross development.  As mentioned earlier, there is a fair amount of complexity in embedded 
computer firmware and software.  Because of this complexity, errors are introduced during development. 
This means that there needs to be tools for debugging the program code.  Some of the common tools are 
described in the following table (Table 10.7). 
 

Table 10.7: Common cross development tools 
 

Tool Description Comments 
Development 
boards 

Hardware development boards and systems are 
connected to the microprocessor.  They bring out 
the microprocessor signals.  This allows for the 
developer to see the address lines and the flow of 
execution.  They normally allow for single 
stepping, limited breakpoints, interrupts and 
processor resets. 
 

Development boards tend to be 
very inexpensive but have limited 
debugging capabilities.  They also 
are not as effective with some 
classes of microcontrollers - 
particularly those with limited 
access to the microprocessor 
signals. 

Monitors The development prototype of the instrument is 
built with RAM for program storage and a 
computer interface – dedicated for development 
use.  The program loaded into the RAM contains 
some code called a monitor.  This monitor 
provides a basic external interface to the 

Monitor-based development tends 
to be inexpensive.  The monitors 
tend to have limited capabilities.  
They also depend on the 
microprocessor running properly.  
If there is a serious hardware or 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 18 6/29/16 

instrument over the dedicated interface.  The 
monitor programs generally provide for memory 
access, starting execution and limited breakpoints.  

software problem, the monitor 
often is not able to work properly. 

Logic Analyzers These are digital logic analyzers built or 
configured for use with microprocessors.  
Normally, they are general-purpose logic analyzers 
with microprocessor pods.  The developer attaches 
the clip onto the microprocessor on the prototype 
or production printed circuit board.  The analyzer 
will convert address and data line signals into the 
appropriate code.  They generally show some of 
the other signals as well. 

Logic analyzer development is 
very common.  It is a middle 
ground in terms of cost and 
functionality between emulators 
and monitors or development 
boards.  

Emulators An emulator is a device connected to the 
instrument being developed in place of the 
microprocessor.  It behaves just like the 
microprocessor except that the developer has full 
control over execution: memory access, register 
access, breakpoints, single stepping, reset, et 
cetera.   

Emulators are very powerful, but 
are rather expensive.  They also 
tend not to be immediately 
available for the latest 
microprocessors. 

 
Emulator development is very powerful, but requires an expensive system for each development station.  
Monitors or development boards are less expensive but not as powerful.  Most major instrument 
development is done with a combination of these techniques. 
 
As embedded computers have become more powerful and complex, there has been a shift from ROM-
based firmware to systems with modifiable program storage memory.  This modifiable program storage 
ranges from Flash memory to integrated hard disk drives.  In these systems, the program is loaded into 
RAM at instrument power up.  This has many advantages.  It allows the instrument to be modified.  It 
allows for shorter development because there is no step producing the mask-programmable ROMs.  It also 
allows the instrument software to be corrected (or patched) after release.  To achieve these characteristics, 
it is necessary for the embedded computer to include a computer interface and a protocol for downloading 
new software.  And this mechanism needs to be done in a way that the user does not accidentally destroy 
the instrument software (making for very expensive paperweights).   
 

10.7.3 High-Level Language Development  
 
Another change, as embedded computers have gotten more powerful, is that most instruments are 
programmed in high-level languages.  A high-level language is one that is at a higher level of abstraction 
than assembly or machine language - where the high-level language constructs and capabilities are more 
complex and conceptual.  In a high-level language, the developer writes code to add (e.g. A=B+C).  In 
assembly language the developer has to load a number from a memory location, add a number from a 
different memory location), and then store the resulting value in a third memory location.  This high-level 
language enables developers to have higher productivity and functionality per line of code written because 
they are dealing with the application at a level closer to the way they think about it.   
 
There are several high level languages that have and are being used for embedded computing.  The most 
popular languages include C, C++, Java and Pascal.   The following table (Table 10.8) compares these 
languages and assembly language.  The example program fragment is based on the same example shown 
previously with assembly language and is intended to show reading character data and processing the 
character data when a space is encountered. 
 

Table 10.8: Common embedded computer languages 
 
Language Example Comments 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 19 6/29/16 

C and C++ if ((PortA & inputMask) == Space ) 
  { ParseInput(); 
 } 

These are the current popular languages for 
embedded programming because of space and 
run-time efficiency. C++ is an object-oriented 
extension to C. They do not inherently 
encourage good programming practices. 

Assembly MOVE  (3F),A  ; read from port 3F 
AND  #7F,A  ; mask upper bit 
COMP  #20,A  ; if equal to space 
BEQ  ParseIt ; then go parse it 

Assembly is not normally used in most 
instruments (because of the complexity of the 
software).  It is not portable but allows for very 
high performance and small size because it is 
symbolic machine code.  Often, developers will 
use a small portion of assembly for critical 
sections of code with the rest written in a high 
level language. 

Java Port a = new Port(“3F”); 
if (a.read == ‘ ‘) ParseInput();  

Java is an object oriented language that 
compiles to a byte code that is run on a virtual 
machine.  Because of this, it has small 
executables and is very portable.  It does run 
somewhat slower than classical compiled 
languages and requires a Java Virtual Machine 
(JVM) which is often ½ megabyte in memory. 

Pascal CONST port = #3F; CONST space = 32; 
BEGIN  
  IF ( rdport(port) & mask) = space  
     THEN CALL parseit; 
END; 

Pascal is an older, block-structured language 
that has been used in some instruments.   

 
Some instruments have been built with special purpose programming languages (or standard languages that 
were modified or extended).  There are development speed benefits to having a language tuned to a specific 
application, but they come at the expense of training, tool maintenance and skilled developer availability. 
 

10.7.4 High-level language compilers 
 
The high-level language source code is normally run through a compiler.  The compiler, like the assembler, 
is a program that runs on a development computer.  It translates the high-level language input into object 
code files – files that contain some symbolic information as well as machine language instructions (or byte 
codes in the case of a language like Java).  There is normally a program called a linker that links together 
the various object code language and system libraries used during the development process and the object 
code files that the developer has produced.  This linked object code is then transferred to the 
microprocessor board.  For moderate to large systems, this is often done by downloading the memory 
image to the computer via a communication interface (like RS-232 or LAN) or via removable media (like a 
floppy).   This process is shown in the following figure (Figure 10.4). 
 
 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 20 6/29/16 

 
 

Figure 10.4: Process of high-level language to machine code 
 
 

10.7.5 Operating systems software 
 
The Operating System (OS) provides the software environment for the programs in the computer 
(embedded or otherwise).  Although not all uses of embedded computers involve a true operating system, 
those used in most instruments do.  The operating system is fundamentally the overarching program that 
enables the computer to do its job of executing the application program(s).  Operating System services 
include: 
 
• System initialization  
• Resource management - memory, input and output devices 
• Task management - creation, switching, priorities, communication 
 
There are different types of operating systems and application environments described in the following 
table (Table 10.9): 
 

Table 10.9: Embedded computer operating systems and application environments 
 

OS / Environment Description Examples 
Bootstrap loader This is not truly an operating system, but a simple program 

that loads another program to run.  Most often, this is called 
a boot ROM and is always in some form of nonvolatile 
memory (ROM or Flash).  They tend to be relatively small. 

Generally 
homegrown.   
 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 21 6/29/16 

Simple executive This is a very simple type of operating system.  They tend 
to be simple software loops that support limited multi-
tasking and scheduling.  They are normally used in very 
simple cases. 

Generally 
homegrown. 
 

Real Time OS (RTOSs) This is a special type of operating system with specific 
extensions designed to support high performance and real 
time characteristics (described in the next section 10.7.6 
Real Time).  This is a very common OS used in 
instruments.  RTOSs tend to be modular and allow for 
relatively easy scaling.   

pSOS+, 
VxWorks, 
Lynx, … 
 

Device OS This is a commercial operating system designed for 
appliances or devices, but not hard-core real time 
characteristics.  They tend to be moderate in size, are ROM-
able and do not require a hard drive. 

Windows CE, 
JavaOS, … 
 

Desktop OS This is a full commercial operating system designed for 
PCs.  They tend to be larger in size and normally require 
some sort of hard drive (and are not normally ROM-able).  
They do not have hard real-time capabilities.  Real time is 
sometimes achieved with add-on processors or underlying 
software extensions.  

MSDOS, 
DRDOS, 
Windows 
95/98/xx, 
Windows NT, 
MacOS 

Server or Multi-user OS These are higher-end operating systems designed for 
multiple users.  These are occasionally used in instruments 
– primarily in multiple-processor designs. 
 

Unix and it 
variants (HP-
UX, Linux, 
SunOS, …), 
Windows NT 

 
A big part of the value and benefit of operating systems is that they support many things going on at the 
same time.   The many different things are called processes or tasks or threads.  There is not general 
agreement between operating system vendors about what each of these terms means.  In general, the terms 
process and task both refer to a program and its associated state information during execution within an 
operating system.  A thread is a part of program that can be run independently of the rest of the program.  
(Programs in an operating system can be single-threaded or multiple-threaded.)  Threads tend to be light-
weight and processes tend to be more complete and costly in terms of the amount of operating system 
overhead.  The basic concept behind all of these processes, tasks and threads is that there are many things 
going on simultaneously.  Rather than have multiple processors or very complex code, the operating system 
allows for multiple processes to request execution, get slices of computer processing time, and request and 
free system resources (like memory and hardware devices).  The management of system resources is 
important because it manages competing access to resources.  In a normal single-processor embedded 
system, it is important to remember that the tasks only execute one at a time (because there is a single 
processor).  They appear to be simultaneous because of the speed of execution and the slices of computer 
execution given to these various processes, tasks or threads.  Typical processes, tasks or threads are shown 
in the following table (Table 10.10). 
 

Table 10.10: Typical embedded computer tasks 
 

Measurement • Calibration and correction 
• Hardware setup 

Calculation • Measurement algorithms 
• Numerical manipulation 

User Interface • Keyboard  
• Knobs and switches 
• Display (LED, LCD, CRT, Video) 

External Interface • Local peripherals 
• Computer interface (RS 232, IEEE 488, Parallel, …) 
• Network interface (LAN, …) 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 22 6/29/16 

 
 

10.7.6 Real Time 
 
A key aspect that an embedded computer designer/developer has to address is the required level of real 
time performance for the embedded computer.  In the context of operating systems, the term real time is 
used to specify the ability of an operating system to respond to an external event within a specified time 
(event latency).  A real time operating system (RTOS) is an operating system that exhibits this specified 
and/or guaranteed response time.  This real time performance is often critical in an instrument where the 
embedded computer is an integral part of the measurement process and it has to deal with the flow of data 
in an uninterrupted fashion.  Most general-purpose operating systems are not real time.   
 
Since PC operating systems need, in general, to be responsive to the user and system events, terminology 
about real time has become somewhat imprecise.  This has brought about some additional concepts and 
terms.  In an operating system, there is a time window bounded by the best and worst response times.  Hard 
real time is when the event response always occurs within the time window independent of other operating 
system activity.  Note that hard real time is not necessarily fast.  It could be microseconds, milliseconds or 
days – it is just characterized and always met.  Soft real time is when the event response is, on average, 
normally in the time window. So, the system designer needs to determine if there is a need for the real time 
performance and whether it is hard real time or soft real time.  Often, an instrument designer will use 
separate processors (especially DSPs) to encapsulate the real time needs and therefore simplify the overall 
system design. 
 
 

10.8 User Interfaces 
 
Originally, instruments used only direct controls - where the controls are connected directly to the analog 
and digital circuits.  As embedded computers became common, instruments used menu or keypad driven 
systems (i.e. where the user input was read by the computer, which then modified the circuit operation).  
Today, things have progressed to the use of Graphical User Interfaces (GUIs).  Although some instruments 
are intended for automated use or are ‘faceless’ (i.e. have no user interface), most need some way for the 
user to interact with the measurement or instrument.  The following tables (Table 10.11 and Table 10.12) 
show examples of the instrument input and output devices. 
 

Table 10.11: Typical instrument embedded computer input devices 
 

Input device Description 
• Buttons / switches A very common input device is a simple switch connected to I/O 

ports on the microprocessor.  Sometimes the switch may have some 
pre-conditioning to remove the ‘bounce’ associated with key closure 
(which could cause spurious signals). 

• RPGs Rotary Pulse Generators (RPGs) are essentially digital knobs.  They 
generate signals that are proportional to the rate, amount and direction 
of rotation.  These are frequently used in a soft-control application in 
place of classical potentiometers.   Some instruments have been 
designed with a single multi-purpose RPG whose function is set by 
the current instrument mode.  

• Keyboard  Most instruments do not have full alphanumeric keyboards – in part 
due to size and in part due to the fact they are not needed.  They are 
used in some applications like telecommunications.  However, 
numeric keypads are very common.  In most cases, the keyboard has 
instrument application specific keys (e.g. ATTENUATION).  
Generally, there is a special keyboard controller chip that takes care 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 23 6/29/16 

of scanning and processing key presses.  Usually, the key-codes are 
mapped into a normal ASCII key-code for use by the microprocessor.   

• Mouse / pointing device In many instruments, there is often some form of pointing device.  A 
mouse is useful, even necessary with a GUI, but it can be a problem 
given the physical environment that some instruments are located in.  
Often there are space or reliability problems with mice.  In these 
cases, track-balls, touch screens, touch pads and the like are effective 
replacements. 

 
 

Table 10.12: Typical instrument embedded computer output devices 
 

Output device Description 
• LEDs Light Emitting Diodes (LEDs) are easily connected to the 

microprocessor's I/O ports.   
• Multi-line displays Multiple line displays are very common in simpler instruments with 

moderate user interface needs.  They are often implemented with 
LEDs, Liquid Crystal Displays (LCDs), and sometimes with plasma 
display technology.  Some are 7 segment displays (like calculators) 
allowing for numbers and a few characters.  Some are 16 segment 
devices that display for alphanumeric characters.  There are also dot-
array style displays from simple 5x7 to full addressable pixels 
(picture elements) that allow for simple graphics. Except for some of 
the simple 7 segment displays, they generally have built-in control 
circuits so they can be directly connected to one of the 
microprocessor’s I/O ports.  This controller is very helpful, from a 
software point of view, because it takes over the task of scanning the 
display. 

• Video displays Some instruments use Cathode Ray Tubes (CRTs) to display 
information.  Most current displays are computer-style displays.  
These can be LCD or CRT technology.  LCDs have advantages in 
weight, power and size and have improved in visual quality.   

• Speaker Audio output is occasionally used in instruments, mostly for error or 
feedback purposes.  Audio output has the disadvantage that in some 
instrument environments, it is difficult to hear.   

 
 
All of these user interface devices can be mixed with direct control devices (like meters, switches, 
potentiometers/knobs, et cetera).  There are a variety of design challenges in developing effective user 
interfaces in instruments.  However, a full discussion of instrument user interfaces is beyond the scope of 
this chapter.  For additional information refer to Chapter ???. 
 
 

10.9 External Interfaces 
 
Most instruments include external interfaces to a peripheral, another instrument device or to an external 
computer.  An interface to a peripheral allows the instrument to use the external peripheral – normally 
printing or plotting the measurement data.  An interface to another device allows the instrument to 
communicate with or control another measurement device.  The computer interface provides a 
communication channel between the embedded computer and the external computer.  This allows the user 
to: 
 
• Log (i.e. capture and store) measurement results 
• Create complex automatic tests 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 24 6/29/16 

• Combine instruments into systems  
• Coordinate stimulus and response between instruments 
 
The external computer accomplishes these tasks by transferring data, control, set-up, and/or timing 
information to the embedded computer.  At the core of each of these interfaces is a mechanism to send and 
receive a stream of data bytes.   
 

10.9.1 Hardware interface characteristics 
 
Each interface that has been used and developed has a variety of interesting characteristics, quirks and 
tradeoffs.  However, there are some common characteristics to understand and consider considering 
external interfaces:  
 
• Parallel or serial:   How is information sent (a bit at a time or a byte at a time)? 
• Point to point or bus/network: How many devices are connected via the external interface? 
• Synchronous or asynchronous: How is the data clocked between the devices? 
• Speed:    What is the data rate? 
 
The following table (Table 10.13) describes these key characteristics. 
 

Table 10.13: External interface characteristics 
 

Characteristic Description 
• Parallel or serial Probably the most fundamental characteristic of hardware interfaces 

is whether they send the data stream one bit at a time (serial) or all 
together (parallel).  Most interfaces are serial.  The advantage of 
serial is it limits the number of wires - down to a minimum of 2 
lines (data and ground).  However, even with a serial interface, 
there are often additional lines used (transmitted data, received data, 
ground, power, request to send, clear to send, et cetera).  Parallel 
interfaces are normally 8 bit or 16 bit.  There are older instruments 
that had custom Binary Coded Decimal (BCD) interfaces - these 
usually had six sets of 4 bit BCD data lines.  Parallel interfaces use 
additional lines for handshaking – explicit indications of data ready 
from the sender and ready for data from the receiver. 

• Point to point or bus/network The other key characteristic of hardware interfaces is whether the 
interface is point to point (between the external computer and 
device/instrument) or some multiple device interface.  The point to 
point interfaces can be very simple.   The multiple device interfaces 
are sometimes implemented as a bus or a network.  These bus or 
network interfaces require some form of device addressing.  Many 
also need some form of conflict resolution to determine who 
currently has the right to send data.  Network style interfaces are 
usually packet oriented – they send addressed blocks of data. 

• Synchronous or asynchronous Synchronous refers to interfaces that use a clock (either a separate 
line or one that can be reconstituted from the signal) to determine 
when the data is to be read.  Asynchronous refers to interfaces that 
do not have a separate clock signal, so they depend on the data 
coming at a relatively consistent rate.   Synchronous interfaces are 
generally faster than asynchronous interfaces. 

• Speed The raw speed of the interface is a key characteristic.  This is 
normally talked about in baud (signaling elements per second) or 
bps (bits per second) for serial interfaces and Mbits (millions of bits 
per second) for network interfaces.  Asynchronous serial interfaces 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 25 6/29/16 

tend to be in the 110 bps to 56 Kbps range.  Network interfaces tend 
to be in the 1 Mbit to 100 Mbit range.   

 
 

10.9.2 Hardware interface standards 
 
The common hardware interfaces used with instruments are: 
 
 

Table 10.14: Common instrument external interfaces 
 

Interface Description Serial/Parallel Point/Network 
IEEE 488.1, 
Hewlett-
Packard 
Instrument Bus 
(HP-IB), 
General 
Purpose  
Instrument Bus 
(GPIB) 

The IEEE 488 interface has been one 
of the primary instrument interfaces.  
It allows (electrically) up to 15 devices 
up to 2 meters apart (each).  It can 
achieve 1 Mbyte/sec transfer rates. 

Parallel  
• 8 data bits 
• 3 wire handshake 

(DAV, NRFD, 
NDAC) 

• 5 additional lines 
(ATN, IFC, EOI, 
SRQ, REN) 

Bus  
• up to 2 m apart 
• 31 addresses 
• talker 
• listener(s) 
• controller 

RS-232C, 
EIA-232-D,  
RS-422A, 
RS-449, 
RS-530, 
CCITT V.24, 
IEEE 1174, 
MIL-188C 

RS-232C (Recommended Standard 
232C) is the venerable serial interface 
from the Electronic Industries 
Association (EIA). Almost all 
computers have some form of RS-232 
interface.  An ongoing challenge with 
RS-232 is configuration – which is not 
defined.  This configuration normally 
includes data rate, number of stop bits, 
connector size (9pin, 15 pin), 
connector style (male or female), 
hardware handshake settings, which 
pin has the transmit data and which 
pin has the receive data (pin 2 and 3 
problems). The other interfaces on the 
left are variations of the RS-232 
standard with variations for data rates, 
configuration and connectors.  Data 
rates for RS-232 are up to 56 
Kbit/second.  The variants can get 
above 10Mbit/second. 

Serial 
• 2 data lines: 

transmitted data: TD 
received data: RD 

• 6 optional additional 
lines 
(RTS, CTS, DTR, 
DSR, DCD, RI) 

Point to point 
• up to ~75 feet 

apart 
 

Centronics, 
EPP, ECP, 
IEEE 1284 

The Centronics interface is a standard 
output (one-direction) parallel 
interface used for connecting 
computers and instruments to printers 
or other peripherals.  It has also been 
used as an instrument interface 
(connecting the computer to the 
instrument).  The original interface has 
been extended to the ECP (the 
Extended Capabilities Port) and EPP 
(the Enhanced Parallel Port). IEEE 
Std.1284-1994 (Standard Signaling 

Parallel  
• 8 data bits 
• 3 wire handshake 

(Strobe, Busy, 
Acknowledge) 

•  6 additional lines 
(Paper out, Error, 
Auto Feed, Select 
In, Select Out,  
Initialize) 

Point to point 
• up to 10 m 

apart 
 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 26 6/29/16 

Method for a Bi-directional Parallel 
Peripheral Interface for Personal 
Computers) defines a superset that 
supports Centronics, ECP, EPP and 
two other parallel interface modes 
(nibble and bi-directional).  The EPP 
and ECP extensions are both bi-
directional interfaces that are about 10 
times faster.  In general, data rates 
tend to be on the order of 50-100 
Kbytes/sec but it is possible to achieve 
up to 2 Mbytes/sec. 

Universal 
Serial Bus  

USB (Universal Serial Bus) is an 
interface between a PC and devices 
(targeted at consumer peripherals).  
The USB peripheral bus is a multi-
company industry standard.  USB 
supports a data speed of 12 megabits 
per second.  

Serial 
• 1 differential data 

line pair: 
data- & data+  

• Supplied voltage 

Network  
• up to ~3-4 m 

apart 
• 127 addresses 

(not including 
bridges or 
extenders) 

• peer to peer 
FireWire 
(IEEE 1394) 

FireWire (Apple’s version) or IEEE 
1394 High Performance Serial Bus is 
another interface between a PC and 
devices.  It provides a single plug-and-
socket connection on which up to 63 
devices can be attached with data 
transfer speeds up to 400 Mbps (and 
eventually more).  It is intended for 
high-performance devices.   

Serial 
• 2 differential data 

line pairs: 
TPA, TPA# 
TPB, TPB# 

• Supplied voltage 

Network  
• up to 4.5 m 

apart 
• 63 addresses 

(not including 
bridges or 
extenders) 

• peer to peer 

Ethernet or 
LAN 
(IEEE 802.3) 

Ethernet is a local-area network 
(LAN) protocol and hardware 
specification developed in 1976 for 
communication between computers.  It 
supports transfer rates of 10 Mbps.  
Although originally on medium to 
large computers, it is available on PCs 
and is also implemented in several 
instruments.  100Base-T is one of 
several variations of Ethernet that 
happens to support 100 Mbps. 

Serial 
 

Network 
• up to ~100-

500+ m apart 
• 248 addresses 
 

 
 

10.9.3 Software protocol standards 
 
The previous interfaces provide the hardware interface between devices and computers.  The physical layer 
is necessary, but not sufficient.  To actually exchange information, the devices (and/or computers) require 
defined ways to communicate called protocols.  If a designer is defining and building both devices that 
communicate, it is possible to define special protocols (simple or complex).  However, most devices need 
to communicate with standard peripherals and computers that have predefined protocols that need to be 
supported.  The protocols can be very complex and layered (one protocol built on top of another).  This is 
especially true of networked or bus devices.  Some of the common protocols used in instruments include: 
 

 
Table 10.15: Common instrument software protocols 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 27 6/29/16 

 
Software protocol Description 

IEEE 488.2 The IEEE 488.2, Codes, Formats, Protocols and Common Commands for Use with 
IEE 488.1 is a specification that defines: 39 common commands and queries for 
instruments, the syntax for new commands and queries, and a set of protocols for 
how a computer and the instrument interact in various situations.  Although this is a 
companion to the IEEE 488.1 interface, it is independent of the actual interface, but 
it does depend on certain interface characteristics. 

SCPI The Standard Commands for Programmable Instruments (SCPI) is a specification 
of common syntax and commands so that similar instruments from different 
vendors can be sent the same commands for common operations.  It also specifies 
how to add new commands, if not currently covered in the standard.  

TCP/IP The Transmission Control Protocol/Internet Protocol (TCP/IP) specification is the 
underlying protocol used to connect devices over network hardware interfaces.  The 
network hardware interface can be a local area network (LAN) or a wide area 
network (WAN).  

FTP The File Transfer Protocol (FTP) specification is a protocol used to request and 
transfer files between devices over network hardware interfaces. 

HTTP The HyperText Transfer Protocol (HTTP) specification is a protocol used to 
request and transfer web (HyperText Markup Language - HTML) pages over 
network hardware interfaces. 

VXI-11 The VXI-11 Plug and Play specification is a protocol for communicating with 
instruments that use the VXI-bus (an instrument adaptation of the VME bus), 
GPIB/HP-IB, or a network hardware interface.  

 
A full discussion of interface protocols is beyond the scope of this chapter, but it is covered in Chapter ???. 
 

10.10 Numerical issues 
The hardware used to construct microprocessors is only capable of manipulating ones and zeros.  From 
these, the microprocessors build up the ability to represent integers and real numbers (and characters for 
that matter).  Microprocessors represent all information in a binary form.   
 

10.10.1 Integers 
 
Integers are directly represented as patterns of ones and zeros.  Each bit corresponds to a subsequent power 
of two – from right to left.  So “0101” is equal to 22+20 or 5.  Most operations on integer data in 
microprocessors use unsigned binary or two’s complement representation.  The unsigned binary has the 
left-most bit representing a power of two – so in a 16 bit number, a 1 in the left most bit has the decimal 
value of 32768.  In unsigned 16 bit binary, “1000 0000 0000 0001” is equal to 215+20 or 32769.  The two’s 
complement binary has the left-most bit representing a negative number.  Again in a 16-bit number, the left 
most bit has the value of –32768 which is then added to the rest of the number4.  So, in two’s complement 
16 bit binary, “1000 0000 0000 0001” is equal to -215+20 or -32768+1 which is -32767.  The range of 
numbers in 16 bit binary two’s complement and unsigned representation is shown in the following figure 
(Figure 10.5): 
 

number two’s complement   number unsigned 
   65535 1111 1111 1111 1111 
   65534 1111 1111 1111 1110 
   65533 1111 1111 1111 1101 

                                                             
4 This can also be viewed that a 1 in the left most bit of a two’s complement number indicates a negative 
number where the rest of the bits need to be flipped and 1 added to the result.   



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 28 6/29/16 

   … … 
   32769 1000 0000 0000 0001 
   32768 1000 0000 0000 0000 

32767 0111 1111 1111 1111  32767 0111 1111 1111 1111 
32766 0111 1111 1111 1110  32766 0111 1111 1111 1110 
32765 0111 1111 1111 1101  32765 0111 1111 1111 1101 

… …  … … 
2 0000 0000 0000 0010  2 0000 0000 0000 0010 
1 0000 0000 0000 0001  1 0000 0000 0000 0001 
0 0000 0000 0000 0000  0 0000 0000 0000 0000 

-1 1111 1111 1111 1111    
-2 1111 1111 1111 1110    
… …    

-32766 1000 0000 0000 0010    
-32767 1000 0000 0000 0001    
-32768 1000 0000 0000 0000    

 
Figure 10.5: 16 bit two's complement and unsigned binary representation 

 

10.10.2 Floating Point Numbers 
 
Given the nature of the vast majority of instruments, representing and operating on real numbers is 
necessary.  Real numbers can be fixed point (a fixed number of digits on either side of the decimal point) or 
floating point (with a mantissa of some number of digits and an exponent).  In the design of microprocessor 
arithmetic and math operations, numbers have a defined number of bits or digits.  The value of floating 
point numbers is that they can represent very large and very small numbers (near zero) in this limited 
number of bits or digits.  An example of this is the scientific notation format of the number 6.022x1023.  
The disadvantage of floating point numbers is that, in normal implementation, they have limited precision.  
In the example, the number is only specified to within 1020, with an implied accuracy of +/-5x1019. 
 
Although there are several techniques for representing floating point numbers, the most common is the 
format defined in IEEE 754 floating point standard.  There are two formats in common use from this 
standard, a 32-bit and a 64-bit format.  In each, a number is made up of a sign, a mantissa, and an exponent.  
There is a fair amount of complexity in the IEEE floating point standard.  The following discussion touches 
on the key aspects. There are aspects of IEEE floating point representation beyond the scope of this 
discussion.  In particular, there are a variety of values represented that indicate infinity, underflow and not a 
number.  For more detailed information on these topics (and more), refer to the IEEE standard.  
 
For the 32 bit format, the exponent is 8 bits, the sign is one bit, and the mantissa is 23 bits.  If the exponent 
is non-zero, the mantissa is normalized (i.e. it is shifted to remove all the zeros so that the left most digit is 
a binary 1 with an implied binary radix point following the left most digit).  In this case the left most digit 
in the mantissa is implied, so the mantissa has the effect of a 24 bit value, but since the left most digit is 
always a 1, it can be left off.  If the exponent is zero, the un-normalized mantissa is 23 bits.  
 

 bit 31 bits 30-23 bits 22-0 
Number Sign Exponent Mantissa 

+ Not a Number (+NaN) 0 1111 1111 Non-zero 
+ infinity 0 1111 1111 0000 0000 0000 0000 0000 000 

… 0 … … 
+ 3.2767x104 (+32767) 0 1000 1101 1111 1111 1111 1100 0000 000 

… 0 … … 
+ 0.125x100 (+1/8) 0 0111 1100 0000 0000 0000 0000 0000 000 

… 0 … … 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 29 6/29/16 

+ 0 0 0000 0000 0000 0000 0000 0000 0000 000 
- 0 1 0000 0000 0000 0000 0000 0000 0000 000 
… 1 … … 

- 0.125x100 (-1/8) 1 0111 1100 0000 0000 0000 0000 0000 000 
… 1 … … 

- 3.2767x104 (-32767) 1 1000 1101 1111 1111 1111 1100 0000 000 
… 1 … … 

- infinity 1 1111 1111 0000 0000 0000 0000 0000 000 
- Not a Number (-NaN) 1 1111 1111 Non-zero 

 
Figure 10.6: 32 bit IEEE 754 floating point binary representation 

 
 
The exponent for 32767 is slightly different than expected because the exponent has a bias of 127 (127 is 
added to the binary exponent).  The 64 bit format has an 11 bit exponent (with a bias of 1023) and a 52 bit 
mantissa. 
 

10.10.3 Scaling and fixed point representations 
 
Microprocessors deal with floating point numbers either through built in floating point hardware, a floating 
point coprocessor, or through software.  When software is used, there are significant performance penalties 
in speed and accuracy – it may take thousands of instructions to perform a floating point operation.  And 
when the microprocessor has floating point capability (directly or through a co-processor), there is added 
cost.  So, in most instrumentation applications, integers are used whenever possible.  Often, instrument 
developers will use integer scaling (an implied offset or multiplier) to allow for some of the benefits of 
floating point with integer performance.   
 
Fixed point number representation is one example of this technique.  In this case, there is an implied radix 
point at a programmer-defined location in the binary number.  For example, a pressure sensor needs to 
represent pressure variations in the range of –4 to +6 Pascals in steps of 1/16th Pascal.  A good fixed point 
representation of this is to take a two’s complement signed 8 bit binary number, and put the implied radix 
point in the middle.  This gives a range of –8 to 7.9375 with a resolution of 1/16th.    
 

number Fixed point scaling 
7.9375 0111 1111  
7.8750 0111 1110  

… … 
0.0625 0000 0001 
0.0000 0000 0000 

-0.0625 1111 1111 
… … 

-7.9375 1000 0001 
-8.0000 1000 0000 

 
Figure 10.7: 8 bit fixed point scaling binary representation example 

 
It is also possible to have arbitrary scaling.  A specific example of this is a temperature measurement 
application.  The thermocouple used can measure –5 degrees Celsius to 120 degrees Celsius.  This is a 
range of 125 degrees.  The thermocouple has an inherent accuracy of ½ degree Celsius.  The analog 
hardware in the instrument measures the voltage from the thermocouple and the embedded computer in the 
instrument converts it into a temperature reading.  It would be possible to store the temperature as a 64 bit 
floating point number (taking additional computing power and additional storage space).  It is also possible 
to store the temperature as a single integer: 125 degrees x 2 for the ½ degree accuracy means there are 250 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 30 6/29/16 

distinct values that need to be represented.  The integer can be an unsigned 8 bit number (which allows for 
256 values).   
 

number Arbitrary scaling 
error 1111 1111 

… … 
error 1111 1011 

120.0 1111 1010 
119.5 1111 1001 

… … 
0.5 0000 1011  
0.0 0000 1010  

-0.5 0000 1001 
… … 

-4.5 0000 0001 
-5.0 0000 0000 

 
Figure 10.8: 8 bit fixed point arbitrary scaling binary representation example 

 

10.10.4 Big-endian and Little-endian 
 
Big-endian and little-endian5 refers to the byte order of multi-byte values in computer memory, storage and 
communication (so this applies to computers and to protocols).  The basis for the differences is determined 
by where the Least Significant Bit (LSB) and the Most Significant Bit (MSB) are in the address scheme.  If 
the LSB is located in the highest address or number byte, the computer or protocol is said to be big-endian. 
If the LSB is located in the lowest address or number byte, the computer or protocol is said to be little-
endian.  
 
To illustrate this, let’s look at a segment of computer memory that contains the 32 bit integer value 2050. 
 

MSB   LSB 
0000 0000 0000 0000 0000 1000 0000 0010 
231        224 223        216 215         28 27           20 

 
Figure 10.9: 32 bit integer for big- and little-endian examples 

 
 
This value, put in a big-endian computer’s memory would look like: 
 

address data  
0 0000 0000 MSB 
1 0000 0000  
2 0000 1000  
3 0000 0010 LSB 

 
Figure 10.10: 32 bit big-endian memory layout 

 
 
This value, put in a little-endian computer’s memory would look like: 
 

                                                             
5 The terms big-endian and little-endian are drawn from the Lilliputians in Gulliver's Travels who argued 
over which end of soft-boiled eggs should be opened.) 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 31 6/29/16 

address data  
0 0000 0010 LSB 
1 0000 1000  
2 0000 0000  
3 0000 0000 MSB 

 
Figure 10.11: 32 bit little-endian memory layout 

 
Although very arbitrary, this is a serious problem.  Within a computer, this is typically not an issue.  
However, as soon as the computer is transmitting or another external computer is accessing binary data, it 
is an issue because a different type of computer may be reading the data.  Mainframes tend to be big-
endian.  PC's and the Intel 80x86 and Pentium families are little-endian.  Motorola 68000 microprocessors, 
a popular embedded microprocessor family, are big-endian.  The PowerPC is unusual because it is bi-
endian - it supports both big-endian and little-endian styles of operation.  Operating systems provide for 
conversions between the two orientations and the various network and communication protocols have 
defined ordering.  Instrument users are not normally aware of this issue because developers deal with the 
protocols and conversions at the application software and operating system level. 
 
 

10.11 Instrumentation Calibration and Correction Using Embedded 
Computers 
 
Instruments normally operate in an analog world.  This analog world has characteristics (like noise and 
non-linearity of components) that introduce inaccuracies in the instrument.  Instruments generally deal with 
these incorrect values and try to correct them by using software in the embedded computer to provide 
calibration (adjusting for errors inside the instrument) and correction (adjusting for errors outside of the 
instrument).  
 

10.11.1 Calibration 
 
Calibration in the embedded computer adjusts the system to compensate for potential errors within the 
instrument and the instrument’s probes.  Embedded computer-based calibration makes hardware design 
much easier.  In the simple case, the embedded computer can apply a calibration to correct for errors in 
hardware.  Hardware is simpler since a linear circuit (with a reproducible result) can be corrected to the 
appropriate results.  The calibration software in an instrument can deal with both the known inaccuracies in 
a family of instruments and also for the characteristics of a single instrument.   
 
A good example of calibration in instruments is the use of Digital to Analog Converters (DACs) to 
calibrate analog hardware in an instrument.  A DAC takes a digital value from the embedded computer and 
converts it to an analog voltage.  This voltage is then fed into the analog circuitry of the instrument to 
compensate for some aspect of the instrument hardware. In a conventional oscilloscope, a probe has an 
adjustment to match the probe to the input impedance of the oscilloscope.  A user connects the probe to a 
reference square-wave source and then adjusts the probe until the trace appearing on the screen is a square 
wave.  In oscilloscopes with embedded computers, this compensation is done automatically by replacing 
the adjustment on the probe with a DAC and having the embedded computer adjust the DAC until it has 
achieved a square wave.  In many cases, such an automatic adjustment is more accurate.  (To fully 
automate this, the embedded computer also needs to switch the input between the reference input and the 
user’s input.) 
 
Another common example of calibration is auto zeroing.  Many measurements can be improved by 
eliminating offsets.  However, the offsets can be tremendously variable depending on many factors like 
temperature, humidity, et cetera.  To achieve this, measuring devices like a voltmeter will alternate between 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 32 6/29/16 

measuring the user’s input and a short.  The embedded computer can then subtract the offsets found in the 
zero measurement from the actual measurement, achieving a much more accurate result. 
 

10.11.2 Linear Calibration 
 
Linear calibrations are one of the most basic and common algorithms used by embedded computers in 
instrumentation.  Typically, the instrument will automatically measure a calibration standard and use the 
result of this measurement to calibrate further measurements.  The calibration standard may be internal to 
the instrument, in which case the operation can be completely transparent to the user.  In some cases the 
user may be prompted to apply appropriate calibration standards as a part of the calibration procedure.   
 
A linear calibration normally requires the user applying two known values to the input.  The embedded 
computer makes a measurement with each input value and then calculates the coefficients to provide the 
calibrated output.    Typically, one of the two known values will be at zero and the other at full scale.  The 
linear calibration will be based on a formula like the following equation (Equation 10.1):  
 

m
VVV shortraw

calibrated
−

=  

 
Equation 10.1: A sample linear calibration formula 

 
This is a simple formula that is relatively quick to perform.  However, sometimes, there are non-linear 
errors in the measurement system.  For example, a parabola in the response curve might indicate a second-
order error.  Even though a linear calibration will result in a better reading in this case, a linear calibration 
cannot correct a non-linear error.  Many instruments address this problem with non-linear calibrations.  
This can be done using a higher-order calibration formula like the following equation (Equation 10.2): 
 

cVbVaV rawrawcalibrated +×+×= 2  
 

Equation 10.2: A sample high-order calibration formula 
 
An alternative to a polynomial is to use a piece-wise linear calibration.  A piece-wise linear correction 
applies a linear correction, but the constants are varied based on the input.  This allows a different 
correction to be applied in different regions of input.  Piece-wise corrections have the advantage of not 
requiring as much calculation as the polynomial.  Regardless of the technique used, high-order corrections 
require more calibration points and therefore a more involved calibration procedure for the user.   
 

10.11.3 Correction  
 
Correction in the embedded computer adjusts values to correct for an influence external to the instrument 
(e.g. in the user’s test setup).   For example, network analyzers will typically compensate for the effects of 
the connection to the device under test (DUT) displaying only the characteristics of the device under test.  
Often, the correction is performed by having the instrument make a measurement on an empty fixture and 
then compensating for any effects this may have on the measured result.  Correction also may be used to 
compensate for the effects of a transducer.  Typically, the sensor in a radio frequency power meter is 
corrected and when transducers are changed, a new correction table is loaded. 
 
 

10.12 Using instruments that contain embedded computers 
 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 33 6/29/16 

In the process of selecting or using an instrument with an embedded computer, there are a variety of 
common characteristics and challenges that arise.  This section discusses some of the common aspects to 
consider: 
 
• Instrument customization - what level of instrument modification or customization is needed? 
• User access to the embedded computer - how much user access to the embedded computer as a 

general-purpose computer is needed? 
• Environmental considerations - what is the instrument's physical environment? 
• Longevity of instruments - how long will the instrument be in service? 
 
 

10.12.1 Instrument customization 
 
People who buy and use instruments sometimes want to modify their instruments.  This is done for a 
variety of reasons.  One of the most common reasons is extension: allowing the user to extend the 
instrument so that it can perform new instrument or measurement operations.  Another very common 
reason is ease of use: customizing the instrument so that the user doesn’t have to remember a difficult 
configuration and/or operation sequence.  A less common, but still important, customization is limitation: 
this modifies the instrument by preventing access to some instrument functionality by an unauthorized user.  
Often this type of customization is needed for safety or security reasons - usually in manufacturing or 
factory floor situations.   
 
There are several common approaches used in instruments to accommodate customization: 
 
• Instrument configuration is the built-in mechanism to set the options supported by the instrument.  

These can include modes of operation, user language, external interfacing options, et cetera.   
• User defined keys, toolbars, and menus are instrument user interface options that allow a user to 

define key sequences or new menu items customized to suit their needs.   
• Command language extensions are instrument external interface commands that the user can define.  

These are normally simple command sequences - macros or batch files.  A macro is defined as a 
symbol or command that represents a series of commands, actions, or keystrokes.  

• Embedded programming languages are mechanisms built into the instrument that allow the 
instrument to receive and run new software (either complete applications or extensions to the current 
applications).   In some cases, these programs are entered from the front panel.  In most cases, they are 
provided by the manufacturer on a storage media (3.5 inch floppy, PCMCIA memory card, et cetera) 
or downloaded over an external interface (IEEE 488, RS-232 or LAN). 

 
This modification set is also important to instrument manufacturers.  It allows the creation of instrument 
personalities: modifying or extending instruments for custom applications or markets.  Personalities are 
very effective for manufacturers because it allows the development of what is essentially a new product 
without going through the process and expense of a full release cycle. 
 
One aspect to keep in mind about all of these customization technologies is that they do inherently change 
the instrument so that it is no longer a 'standard' unit.  This may cause problems or have implications for 
service and also for use because the modified instrument may not work or act like the original, unmodified, 
instrument.  
 
The user accessible embedded programming language mechanism has been a popular mechanism in 
instruments.  Typical accessible languages are Basic, Java and C or C++.  The following table (Table 
10.16) discusses these languages.  It also shows a simple example program in each language that reads 
some data from a port ten times and checks for an error condition. 
 

Table 10.16: Common user-accessible embedded programming languages 
 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 34 6/29/16 

Language Example Comments 
Basic 10 Full = 127 

20 FOR I=1 TO 10 
30 MyData = Read(Port) 
40 IF MyData > Full GOTO MyError  
50 NEXT I 

Basic has been one of the most common 
languages included inside instruments.  It is 
easy to learn and use.  It is almost always 
interpreted, which generally means there are 
performance limitations.  Unfortunately, there 
are many dialects of Basic with minor 
variations and extensions to the language.   

Java int full = 127; 
for(int i = 1; i <= 10; i ++) { 
  int myData = read(port); 
  if (myData > full) throw(myError); 
} 

Although Java can be used in the instrument 
software development, it can also be used as a 
user accessible language.  It is interpreted, so it 
also has performance limitations (but usually 
not as severe as Basic).  To be useful, 
extensions to the language through class 
libraries are required.  There are difficulties in 
that the extensions require access to the 
underlying instrument architecture which 
expose the inner workings (which are often 
proprietary). 

C/C++ int i, myData, full; 
full = 127; 
for(i = 1; i <= 10; i ++) { 
  myData = read(port); 
  if (myData > full) myError(); 
} 

Although C and C++ are very common 
instrument implementation languages, they can 
also be used in an instrument as a user 
accessible language.  They are very good at 
producing customizations that are small and 
fast.  They are not very appropriate for end 
users because of the difficulty of programming.  
They are mostly useful for manufacturers and 
instrument system integrators.  There are also 
difficulties in that the extensions need access to 
the underlying instrument architecture which 
expose the inner workings (which are often 
proprietary). 

 
In addition to these standard languages, some instrument designers have created special purpose languages 
to extend or customize the instrument.  Similar to custom embedded development languages, there can be 
ease of use benefits to having a custom language.  However, these custom languages come at the expense 
of user training, user documentation, and internal instrument language development and maintenance costs. 
 

10.12.2 User access to an embedded computer 
 
As discussed earlier, many instruments now use an embedded PC or workstation as an integral part of the 
system.  However, the question arises: “Is the PC or workstation visible to the user.”  This is also related to 
the ability to customize or extend the system.   
 
Manufacturers get benefits from an embedded PC because there is less software to write and it is easy to 
extend the system (both hardware and software).  The manufacturers get these benefits even if the PC is not 
visible to the end user.  If the PC is visible, users often like the embedded PC because it is easy to extend 
the system, the extensions (hardware and software) are lower cost, and they don't have to have a separate 
PC.   
 
However, there are problems in having a visible embedded PC.  For the manufacturer, making it visible 
exposes the internal architecture.  This can be a problem because competitors can more easily examine their 
technologies.  There are also problems in that users can modify and customize the system.  This can 
translate into the user overwriting all or part of the system and application software.  This is a serious 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 35 6/29/16 

problem for the user, but is also a support problem for the manufacturer.  Many instrument manufacturers 
that have faced this choice have chosen to keep the system closed (and not visible to the user) because of 
the severity of the support implications.   
 
The user or purchaser of an instrument has a choice between an instrument that contains a visible 
embedded PC and an instrument that is 'just' an instrument (independent of whether it contains an 
embedded PC).  It is worth considering how desirable access to the embedded PC is to the actual user of the 
instrument.  The specific tasks that the user needs to perform using the embedded PC should be considered 
carefully.  Generally, the instrument with a visible embedded PC is somewhat more expensive. 
 

10.12.3 Environmental considerations 
 
The embedded computer is (by definition and design) inside the instrument.  Therefore, the computer has to 
survive the same environment as the instrument.  Although many instruments are in ‘friendly’ 
environments, this is certainly not always true.  Some of the specific factors that should be considered for 
the embedded computer by the instrument user and designer are discussed in the following table (Table 
10.17). 
 

Table 10.17: Environmental considerations for embedded computers 
 

Environmental characteristic Description 
• Temperature and humidity The embedded computer and its internal peripherals have to withstand 

the temperature and humidity of the instrument environment.  Often, 
this requires a fan, given the current power used by embedded 
computers.  Fans themselves can cause issues with failure, dust and 
blockage, which lead to over-heating problems. 

• Shock and vibration Many instruments need some form of mass storage device.  Most of 
these devices are very sensitive to shock.  It is often necessary to use 
special mounting or to use an alternative device (like flash memory).   

• Operator interface If the system is installed in a challenging environment, the human 
interface has to operate with those aspects.  For example, the system 
can be located where there are high amounts of dust, dirt, industrial 
chemicals, industrial gases, coffee, soft drinks, untrained operators, et 
cetera.  The human interface components that need to survive these 
threats include the keyboard, pointing devices, display, switches, 
knobs and removable media (like floppy disks).   

• Power quality Often the quality of power at the measurement site is suspect or poor.  
Most instrument power supplies are very carefully designed because 
of the analog aspects of the system.  If the embedded computer has a 
separate power supply, it needs to be properly regulated taking the 
power quality into account.  This is especially true of embedded PCs 
or workstations.  

• Power fail A separate issue from power quality is power failures.  For simpler 
instruments, this tends to be less of a problem.  However, for more 
and more instruments, the embedded computer makes power failures 
a real challenge.  These more complex systems have a variety of 
issues: configuration memory in the middle of modification, buffers 
that need to be written to disk, et cetera. 

• Radio Frequency Interference Radio Frequency Interference (RFI) is a problem both from and to the 
embedded computer.  Most embedded computers are operating at 
clock frequencies of tens and hundreds of MHz with wide buses 
(transmission lines).  This causes high levels of generated RFI within, 
and potentially outside, the box.  The designer needs to ensure that the 
embedded computer does not affect the instrument function or the 



Embedded Computers in Instruments  Final for copy editing 
Tim I Mikkelsen Page 36 6/29/16 

function of other instruments nearby.  Similarly, the computer is 
susceptible to RFI generated by the rest of the instrument and by 
devices outside of the instrument. 

 
 

10.12.4 Instrument Longevity 
 
Instruments tend to be built and used for very long periods of time.  Unlike the consumer or personal 
computer markets, it is not unusual for a popular instrument to be manufactured for 15 years and in service 
for 20 years or more.  This has implications on the embedded computer in the instrument for the users and 
manufacturers: 
 
• Microprocessor The microprocessor chip used in the instrument needs to be available 

for manufacture of the instrument through the life of the product.  
There also needs to be chip availability for maintenance. 

• Language If the languages used for developing or customizing the instrument 
are in the mainstream, they will probably be around later in the 
instrument’s life.  Custom and non-mainstream languages will 
become support challenges for the manufacturer and the user. 

• Firmware / software Software (applications, operating systems and utility software) will 
have defects and changes.  Instruments will usually get different 
software over the life of a production run.  Customer units will often 
be updated with these to enable general improvements or to fix critical 
defects.  This can, over time, become a serious problem for a variety 
of reasons: 
• Is there enough memory for the upgrade? 
• Is there enough disk or flash space for the upgrade? 
• What software version is the instrument being upgraded from? 
• What is the hardware configuration of the instrument? 
• Where are the upgrades for an old instrument archived? 

• Interfaces Over time computer and instrumentation interfaces change.  For 
example, BCD interfaces were previously not uncommon for 
instruments.  Some good questions to ask are: 
• What performance is needed over the instrument's life? 
• What will be common on PCs over time?   
• Will the interface choice (hardware and drivers) be available on 

PCs over time? 
• Removable media As with interfaces, computer media changes as well.  For example, 

5.25” floppy disk media was a popular choice.  It is worth considering 
what is media choice over the life of the instrument taking into 
account size, cost, capacity, writability, reliability, and long term 
viability of the media format.  

• People It is very important to adequately document the instrument design, 
support, manufacture, customization and use.  Over the course of 
decades, people move on and knowledge can be forgotten or lost (or 
even destroyed).   

 


